

Extended Power Uprate (EPU) Vibration Assessment and Vulnerability Review

October 25, 2004

Agenda

Ċ

- Introduction
- EPU Vibration Assessment
- EPU Vulnerability Review
- Sample Probes
- Planned Actions/Outage Scopes
- Closing Remarks

Introduction

1

James Meister Vice President, Nuclear Services

Quad Cities (QC) Steam Dryer Replacement Project

EPU Vibration Assessment

11

Sharon Eldridge Corporate Engineering

Topics

4

- Vibration Evaluation
- Timeline
- Exelon Actions
- Original EPU Monitoring Plan
- Vibration Evaluation/Scope
- Purpose, Scope, and Methodology
- Results
- Independent Reviews
- Summary

Vibration Evaluation

- The purpose of the vibration evaluations was to provide assurance that potentially affected components would perform acceptably for at least a full 24-month cycle at EPU full thermal power operation
 - All evaluations and testing are completed except for the Target Rock Safety/Relief Valve (S/RV)
 - Implementation of actions is either planned or complete to support return of QC Units 1 and 2 to full EPU power operation
 - DR evaluations support continuation of full EPU power operation

Timeline

G

Exel[®]un...

Exelon Actions

- Exelon established a comprehensive action plan which included three teams to identify actions to prevent future EPU failures
 - Steam Dryer Team
 - EPU Vulnerability Team
 - Vibration Team

Original EPU Monitoring Plan

- DR/QC EPU initial vibration monitoring plan was based on industry guidance for piping
 - Utilized accelerometers on large bore piping supports
 - Focused on piping, both large and small bore, to prevent failures
 - Acceptance criteria for piping vibration limits based on American Society of Mechanical Engineers criteria (i.e., OM Part 3)
 - Approach to implementing the monitoring plan contributed to failure of MS low point drain line at QC2
- Industry guidance for components was also utilized
 - Pump vibration monitoring conducted
 - Relied on component surveillance testing to ensure acceptability

Vibration Evaluation/Scope

٠,

- During QC1 dryer repair outage in November 2003, the 3B ERV actuator was identified to be damaged
 - Root cause investigation was initiated
 - A detailed inspection scope was developed and implemented for both QC and DR to determine "extent of condition" and identify any other potentially vulnerable components
- Exelon completed comprehensive walkdowns of plant systems and components at DR3 and both QC units to bound the extent of condition
 - The DR2 refueling outage occurred prior to November 2003 discovery
 - Evaluations for DR2 were based on surveillance feedback information and EPU power ascension vibration data
 - ERV actuator inspections
 - Main Steam Isolation Valve (MSIV) work during outage
 - Miscellaneous MSL support inspections

Vibration Evaluation/Scope (cont.)

- A detailed list of potentially vulnerable components was developed for each evaluation
 - Each component was dispositioned by evaluation, walkdown results or testing
- EPU related vibration issues identified as a result of these walkdowns include:
 - Remaining three ERVs degraded (QC)
 - Limitorque operator limit switch degraded (QC)
 - Various pipe support mechanical connections with loose nuts and bolts (DR/QC)
- Based on the walkdown results, accelerometers were installed on susceptible components for data collection and reevaluation
 - MSIVs
 - ERVs
 - Various limit switches, including Namco-type on MSIVs
 - SRVs and Target Rock S/RV
 - Valve operators (Limitorques)

Purpose, Scope, and Methodology Exelon...

- Component/system responses for full EPU thermal power operation were assessed using:
 - Vibration data collected throughout the available range of power operation
 - Vibration data obtained during ramp up to full EPU power level for each of three units (fourth unit was already at full EPU power)
 - Data was extrapolated to correspond to levels expected at full thermal power and utilized in evaluations
 - Actual vibration levels will be measured when the units stabilize at full power to confirm the assumptions made
 - Industry operating experience
 - Component failure/preventive maintenance (PM) history
 - Analytical modeling
 - Testing at Wyle Laboratories
 - Inspection results

Results

General Assessment

- Evaluations concluded that all components are acceptable as originally designed for full-cycle operation at full EPU thermal power with the following exceptions:
 - ERV susceptibility to vibration at QC required upgrades of vulnerable parts
 - Target Rock S/RVs showed vibration wear degradation at both QC and DR
- The team identified additional recommendations for enhancements in testing, monitoring, and refueling outage inspections
 - An example is confirmatory vibration testing of Limitorque and Namco limit switches (completed successfully)

Results ERV Components

- Wear mechanism is a result of a local structural mode of the solenoid plunger assembly
 - Response due to assembly floating on spring
- ERV response for full EPU power operation was evaluated
 - Detailed finite element models were completed for the ERVs
 - Testing performed at Wyle Laboratories to determine/confirm failure mode and to test proposed modifications
 - Over 50 individual tests performed to validate wear mechanism and proposed valve/actuator modifications

Results

ERV Components (cont.)

Nuclear

 The four ERVs have virtually identical assemblies, which consist of the main ERV valve body, pilot valve, and solenoid actuator

Results ERV Components (Actuator Internals)

- Wear mechanism is result of a local structural mode of the solenoid plunger assembly
 - Response due to assembly floating on spring

Supporting Springs

Results ERV Components (Worn Bushings)

Nuclear

1

Groove worn by spring point

Brass bushing

Results

ERV Components (Acceptability)

- Vulnerable components within the actuator assembly are being modified
 - Material changes implemented for parts which have historically exhibited unacceptable wear
 - Inconel X750 bushings and guide rods being installed
 - Springs are being chamfered to remove hard edges which cause damage
- Vibration endurance testing completed and provides assurance of full-cycle operation with only inconsequential wear of the affected components
- PM revisions were made to ensure that inspections/rebuilds are performed every cycle until adequate performance is assured
 - Standard PM feedback/revision process will be used

Results Target Rock S/RV

- As-found testing on QC2 Target Rock S/RV resulted in +6.8% lift point
 - Disassembly and inspection determined that wear of the bellows cap caused spring resistance to increase
 - Groove worn in bellows cap caused spring to bind
 - Additional force required to open valve is approximately 70 pounds
- Test results for two DR Target Rock S/RVs: -3.6% (with EPU operating history) and -1.4% (without EPU operating history)
 - Both valves exhibited wear patterns similar to QC valves

Results Target Rock S/RV

- Shaker table testing has been performed to confirm wear phenomena driver
 - Testing produced similar wear to the as-found condition
 - Conclusion is that the wear is a function of the spring and cap configuration combination and the materials installed
 - Phenomenon is not exclusive to EPU operation
 - Enhanced tolerances and materials on first stage pilot spring and cap combination being implemented
 - The solution has been developed and tested, and will be installed in DR3 during the November 2004 refueling outage
 - An additional enhancement is being evaluated, including any necessary prototype testing

Target Rock Pilot Bellows Cap and Spring

In-service bellows cap and spring

ResultsOther Testing

- Namco limit switches tested with plant level data for vibration endurance
 - Results showed acceptable performance
 - Matched previous analytical results
- Limitorque limit switch vibration endurance testing with plant level data
 - Results showed minimal wear for simulated one cycle operation that resulted in no impact to valve function

Independent Reviews

- Each individual component evaluation was subjected to an independent review
 - The purpose was to ensure that the analytical methods, assumptions, judgment, and conclusions were reasonable
 - Reviews were performed by MPR Associates and Stevenson and Associates personnel
- Conclusions were that the assessments, combined with the planned testing (i.e., shaker table), would provide the desired assurance that evaluated components are capable of performing satisfactorily for a full cycle of EPU full thermal power operation

Summary

- The completed vibration evaluations provide assurance that potentially affected components will perform acceptably for at least a full 24-month cycle at EPU full thermal power operation
 - All evaluations and testing are completed except for the Target Rock S/RV
 - Implementation of actions is either planned or complete to support return of the QC units to full EPU power operation
 - Detailed walkdowns
 - Installations of upgraded ERVs and Target Rock S/RV
 - New steam dryer
 - DR evaluations support continued full EPU power operation
 - Detailed walkdowns
 - Installation of Target Rock S/RV upgrade and enhancements to steam dryer

EPU Vulnerability Review

Mohammad Molaei Dresden Engineering Programs Manager

Topics

Exel[®]

- Mission and Goals
- Process Used
- Systems Reviewed
- Potential Vulnerabilities and Actions
- Conclusions
- Summary

Mission and Goals

- Mission identify potential EPU-related vulnerabilities for DR and QC, and actions to prevent failures induced by those vulnerabilities
- Goal eliminate operational challenges, as measured by
 - Licensee Event Reports
 - Engineered safety features actuations
 - Reactor scrams
 - Plant power derates
 - Unplanned entries into Technical Specifications
 - Operator work-arounds or challenges (increases risk of one of the above events)
 - Unexpected accelerated degradation (that increases risk of one of the above events)
 - Loose/lost parts

Process UsedPower and Safety Systems

- Power Systems
 - Phase I Data Collection and interviews
 - Phase II System Level and Component Level Evaluations
 - Phase III Vulnerability Assessments and Recommendations
- Safety Systems
 - Event input verification
 - Task report output implementation validation
 - Effect of power operation at EPU condition on safety components
- A total of 42 power systems and 10 safety systems were reviewed

Process Used Technical Rigor

Exelon...

Nuclear

- For the purpose of this review, the components in the plant were assumed to be susceptible to failure, unless proven otherwise
- Evaluated changes in operating parameters post-EPU for four units
 - Flow rate, temperature, pressure, radiation level, vibration level, and wear rate
- Utilized process of elimination at system and component levels
- Identified potential vulnerabilities due to the changed parameters
- Developed actions to address the potential vulnerabilities
- Results were challenged in multiple stages, by various teams
- Utilized multiple industry organizations

12114

Systems Reviewed

Power Systems

- Reactor Recirculation and Vessel Internals
- Main Steam
- Off Gas
- Feedwater
- Feedwater Level Control
- Condensate
- Condensate Booster
- Condensate Demineralizer
- Main Generator
- Generator Hydrogen Cooler
- Stator Cooling
- Isolated Phase Bus Duct
- Instrument Air
- Reactor Building Closed Cooling Water
- Turbine Building Closed Cooling Water
- Spent Fuel Pool Cooling
- Shutdown Cooling/Residual Heat Removal
- Radwaste
- Circulating Water
- Reactor Building Equipment Drain
- Turbine Building Equipment Drain

- Hydrogen Addition
- Zinc Injection
- Service Water
- Reactor Water Clean Up
- Nuclear Instrumentation
- Control Rod Drive
- Reactor Building Ventilation
- Turbine Building Ventilation
- Control Room Ventilation
- Extraction Steam
- Heater Drain
- Misc. Heater Vents and Drains
- Turbine Oil
- Main Turbine
- EHC
- Main Condenser
- Onsite Power
- Offsite Power
- Process Radiation Monitoring
- DC Power
- Main Generator Exciter

Systems Reviewed Safety Systems

- Automatic Depressurization System (ADS)
- Containment
- Core Spray (CS)
- Emergency Diesel Generator (EDG)
- High Pressure Coolant Injection (HPCI)
- Isolation Condenser (IC)
- Low Pressure Coolant Injection (LPCI)/Residual Heat Removal (RHR)
- Reactor Core Isolation Cooling (RCIC)
- Standby Gas Treatment (SBGT)
- Standby Liquid Control (SLC)

Potential Vulnerabilities and Actions

- Components susceptible to increased vibration due to increased FW flow
 - Perform a visual inspection of a sample of separator stand pipe welds to the shroud head
 - Perform a visual inspection of the FW sparger end bracket pin
- 2. Components susceptible to increased vibration due to increased core differential pressure (d/p)
 - Establish the value of core d/p at which slip joint bypass leakage initiates jet pump vibration
 - Accelerate the Boiling Water Reactor Vessel Internals Project (BWRVIP)-41 required inspection of the restrainer gate wedges for evidence of wear

Potential Vulnerabilities and Actions (cont.)

- 3. Enhance PMs to address increased wear
 - Accelerate generator PM
 - Increase recirculation pump/drive motor/motor generator set PMs
 - Enhance valve internals and actuator PMs in the systems with changed parameters
 - Replace one high flow switch in each MSL, inspect for signs of degradation and adjust PM accordingly
 - Inspect offgas condenser division plate bypass valve
 - Perform eddy current testing of a sample of unstaked tubes at the staked region of the main condenser

Potential Vulnerabilities and Actions (cont.)

- Increased vibration caused by increased flow and Recirculation pump speed
 - Perform a one-time inspection of the internals of the stator cooling temperature controller
 - Install flex hoses on all cooling lines to the condensate and condensate booster pump bearings and the FW pump seals
 - Perform a one-time inspection of electrical connections/mechanical linkages subject to turbine control valve vibrations
 - Perform one-time vibration measurements on susceptible small bore FW piping at various designated power levels
 - Inspect the recirculation loop flow sensing lines and other smallbore piping in the drywell after recirculation pump speeds are increased to levels not previously attained

Potential Vulnerabilities and Actions (cont.)

- 5. Gradual component degradation from less than optimum FW and condensate pump configurations
 - Perform a one-time boroscope examination of all four condensate pump impellers during the next refueling outage
 - Install proximity probe or ultrasonic flow measuring device to accurately assess pump impeller degradation
 - Assess the feasibility of two FW pumps and three condensate/condensate booster pumps combination
 - For current operating configuration, perform analysis and validation testing to identify optimum operating conditions to start and stop condensate/condensate booster and feedwater pumps
 - Increase the PM frequency for FW pump seal replacement to two years from the current four years

- 6. Increased FW and condensate flow on balance-of-plant valves and internal components
 - Perform sizing calculation for the condensate/condensate booster minimum flow valve
 - Perform sizing calculation for the high pressure (HP) and low pressure (LP) heater inlet, outlet, and bypass motor-operated valves
 - Evaluate the temperature element thermowells in the condensate, condensate booster, and FW systems; also assess the hydrogen and oxygen injection quills
 - Redesign and install the condensate and FW system sample probes

- 7. Increased flow accelerated corrosion (FAC) due to increased FW flow
 - Determine the cause of the higher than expected condensate influent iron concentration in DR3; inspect LP heater casing for effects of corrosion
 - Measure pipe wall thickness at susceptible locations to validate the EPU assumptions in the FAC program
 - Evaluate the outage template for control rod vacuuming and increase frequency if necessary
 - During scheduled control rod drive hydraulic control unit overhauls, inspect the inlet and outlet filters for plugging
 - Institute programmatic FW heater and flash tank non-destructive examination inspections on a three-cycle frequency

- 8. Existing system performance issues were exacerbated by EPU implementation
 - Restore margin and eliminate abnormal operating condition for the heater drain system
 - Perform main condenser tube cleaning and waterbox de-sludging if monitoring parameters indicate the presence of scale or debris
 - Resolve the overpressure condition on LP heaters and the drain coolers
 - Optimize FW level control system performance by developing an analytical model considering various pump combinations and power levels

- Post-EPU operating and analytical margins have been reduced
 - Monitor cross-around relief valves for leakage after any pressure transient within the turbine boundary
 - Reevaluate task report recommendation to operate with full offgas condenser condensate flow
 - Identify systems or analyses with limited post-EPU margin and evaluate/implement actions to increase margin

Conclusions Safety Systems

- Functions of safety systems remain uncompromised
- Design inputs used in analyses are conservative due to the fifth unit model; the fifth unit model results in overly conservative calculated margin in some cases
- Analyses results have been adequately implemented with the exception of changing residual heat removal motor lubrication oil at QC; not an issue due to current operation at pre-EPU power levels
- Some documentation deficiencies were discovered during the review that are being resolved through the corrective action program

Conclusions

۱,

Power Systems

- Found no vulnerabilities that posed an immediate challenge to plant operation
- 101 actions were identified to improve operating margin and prevent future failures
- Most of the actions address accelerated equipment aging or wear due to EPU

Summary

- Rigorous and comprehensive review was conducted
- Extensive corrective actions were developed during the review
- Vulnerability review relied on EPU assessment, previously addressed, for evaluation of vibration effects on MS piping and components
- Considerable knowledge was gained during the review on impact of EPU operation and was shared with the industry
- Safety system review, while focused, confirmed the adequacy of the original licensing analysis for EPU
- Review concluded that safe and reliable EPU operation is achievable for DR and QC

FW Sample Probes

Linda Dyas

Dresden Equipment/Programs Specialist

Exelon...

Dresden Probe History

Exel^tu_s

Nuclear

Unit 2

- Failed FW probe damaged the FW sparger in October 2003 probe removed and damage repaired
- Failed condensate demineralizer effluent (CDE) probe damaged the condensate booster pump in October 2003 – probe removed, and pump casing and impeller replaced
- Condensate pump discharge (CPD) probe was replaced as part of condensate pre-filter modification in 2001

Unit 3

- Two FW probes were discovered and removed from FW sparger in December 2003
- CDE probe was removed and replaced in December 2003
- CPD probe was replaced as part of pre-filter modification in 2002

Schedule for Probe Replacement

	Dresden		Quad Cities	
	Unit 2	Unit 3	Unit 1	Unit 2
FW Probe	Oct 2005*	Nov 2004	April 2005	Complete
CDE Probe	Oct 2005	Nov 2004	April 2005	Complete
CPD Probe	Complete**	Complete**	April 2005	Complete

^{*} FW probe retrieval planned during October 2005 refueling outage on DR2

^{**} Steam jet air ejector intercondenser water box inspections during DR2 and DR3 refueling outages to ensure CPD probe did not fail prior to the pre-filter modification

Current Dresden Status

- Operability determination was performed prior to DR2 restart in December 2003
- Lost parts evaluation for DR2 and DR3 FW sample probes was performed in December 2003
- Both evaluations concluded that safe reactor operation will not be compromised

Planned Actions/Outage Scopes

James Meister Vice President, Nuclear Services

Planned Actions/Outage Scopes

(Vibration Assessments)

1-

- Validate PM scope and frequency for all evaluated components
 - ERV PM changes already implemented
- Replace ERV actuator parts for both DR and QC during future rebuilds
- Inspect ERV actuator internals each refueling outage until performance is validated
- Perform focused walkdowns during each refueling outage
- Inspect minimum of one MSIV internally each refueling outage until satisfactory performance is demonstrated
- Install upgraded Target Rock S/RVs

Planned Actions/Outage Scopes (DR Fall 2004 Outage/QC Spring 2005 Outage)

Nuclear

- Inspection
 - In-vessel visual inspections
 - QC1 steam dryer lost part
 - Boroscopic inspections
 - Internal valve inspections
 - Walk-downs
 - NDE inspections
 - Eddy current testing
 - MSL flow d/p switch

Modifications:

- Steam dryer modification/replacement
- Sample probes
- Flex hoses
- 2x1 welds
- Orifice resizing
- Data recorders

Closing Remarks

James Meister Vice President, Nuclear Services

Closing Remarks

- Vibration assessment and extent of condition review provide assurance that potentially affected components will perform acceptably for at least a full 24-month cycle at EPU full thermal power operation
- Considerable knowledge was gained during the review on impact of EPU operation and was shared with the industry
- Functions of safety systems remain uncompromised
- Exelon is taking aggressive action to address EPU-related issues, including locating and retrieving loose parts
- Exelon remains confident that EPU can be implemented safely and reliably for the long run at DR and QC